

Chemistry of Cold-Start Emissions and Impact of Emissions Control Project ID: ace153

Oak Ridge National Laboratory
National Transportation Research Center

PI: Melanie Moses-DeBusk Email: mosesmj@ornl.gov

Phone: 865-341-1338

2020 DOE Vehicle Technologies Office Annual Merit Review

June 3, 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Annual Merit Review

Acknowledgements

Siddiq Khan, Ken Howden, Gurpreet Singh, Mike Weismiller

Contribution from the ORNL Team:

 Shannon Mahurin, John Storey, Sam Lewis, Maggie Connatser, Larry Moore, Shean Huff

Supply of HC-traps and Advisors at Umicore:

- John Nunan, David Moser

- Guidance from Advisors at Ford Motor Company:
 - Jason Lupescu, Christine Lambert

Overview

Timeline

Project start date: FY2019

Project end date: FY2021

Budget

	FY19	FY20
Task 4*: Chemistry and Control Cold-Start Emissions	\$500k	\$500k

- *New ORNL task in FY2019
- Part of larger ORNL response to 2018 VTO AOP Lab Call "Controlling Emissions from High Efficiency Combustion System"

Barriers

U.S. Drive Advanced Combustion & Emissions Control Roadmap Barriers & Targets

- U.S. EPA Tier 3 Bin 30 emissions
- Reduced cold start emissions
- "..HC Traps must be designed for effective control of specific HC species that are present in gasoline engine exhaust."

Collaborations

- Umicore: advisory role & supply HC-traps and GPFs
- Ford Motor Company: advisory role
- Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS)

Milestones: task specific over 3-year project

Completed

• FY2019, Q1: Define the different engine platforms to be tested

Completed

• FY2020, Q1: Completed a statistically significant LD gasoline campaign on gaseous HC emissions and PM focused on cold-start

Completed

 FY2020, Q3: Complete HC speciation analysis of LD HC speciation emissions and aftertreatment impacts on PM emissions and compositions

On Track

 FY2021, Q1: Complete a statistically significant LD cold-start sampling campaign focused on HC emissions changes over HC-Trap

On Track

• FY2021, Q3: Submit a manuscript on LD cold-start emissions

• FY2021, Q4: Completed a statistically significant hybrid cold-start campaign on gaseous HC emissions and PM

Why study the chemistry of cold-start emissions?

Relevance

Approach

Technical

Collaboration

Future Work

Barrier

U.S. EPA Tier 3 Bin 30 emissions (NMOG + NOx)

TIER 3 FTP STANDARDS

Tier 3 Certification Bin Standards (FTP, 150,000 mi)						
Bin	NMOG+NOx (mg/mi)	PM¹) (mg/mi)	CO (g/mi)	HCHO (mg/mi)		
Bin 160	160	3	4.2	4		
Bin 125	125	3	2.1	4		
Bin 70	70	3	1.7	4		
Bin 50	50	3	1.7	4		
Bin 30	30	3	1.0	4		
DITTEU	۵۷	3	1.0	4		
Bin 0	0	0	0	0		

Phase-in of new US Emissions Standards (2017-2025)

FLEET AVERAGE NMOG+NOx FTP PHASE-IN (MG/MI)

Delphi World Emissions for Passenger cars and light duty vehicles 2018-2019

Relevance

Cold-start emissions must be addressed to meet increasingly stringent emissions regulations (90% of emissions from cold-start (Bag 1))

Bag 1 ("cold")
Bag 2 ("hot")

Pihl, J.A., et al. SAE Technical Paper 2018-01-1264 (2018).

Objective/Approach

- HC-Traps are a potential emissions control solution option for reducing cold-start hydrocarbon emissions
 - All traps not uniformly effective for all HC
- Target speciation of cold-start HC emissions from consumer, on-road vehicles
 - Specifically during first 250s of FTP-75 cold-start
 - Impact of aftertreatment catalysts on speciation

Low temperature emissions control challenges affect multiple platforms

ORNL R&D portfolio spans wide range of applications, technologies, size scales, commercial readiness

ORNL Projects

Future Work

Collaboration

CLEERS (ACE022)

Model new trap materials and aging effects on SCR catalysts

Low Temperature Emissions Control (ACE085)

Discover new low T catalysts & traps

Lean Gasoline Emissions Control (ACE033)

Develop pathways for lean gasoline engines
to meet emissions with minimum fuel penalty

Chemistry & Control of Cold Start Emissions (ACE153)

Understand how exhaust chemistry impacts device performance & design

Cummins Emissions Control CRADA (ACE032)
Understand how aging affects properties
and performance of SCR catalysts

How to study the chemistry of cold-start emissions

Relevance

Approach >>

Technical

Collaboration

Future Work

Vehicle Platforms on Chassis Dynamometer

Truck A and Truck B: MY18, GDI pick-up trucks (25-30k on-road miles)

	Engine	Exhaust Modifications	
Truck A	2.7L Turbo (V6)	Removed: muffler, resonator	
Truck B	5.3L NA (V8)	Removed: UB catalyst, muffler, resonator	

FY20

Cold-Start:

- 1 cold-start/truck per day
 - Cold-start = 12 hour soak

HCT+GPF Out

• 1st, 250s of FTP-75

Sampling:		Time R	<u>esolved</u>	Cumulative 250s			
		FTIR	EEPS	РМ	Aldehydes	Volatile C5-C8	Semi-volatile C9-C18
	Engine Out	\checkmark	\checkmark	✓	✓	\checkmark	✓
	ccTWC Out	\checkmark	\checkmark	✓	✓	\checkmark	✓
	HCT out	FY20	FY20	FY20	FY20	FY20	FY20

FY20

FY20

FY20

FY20

FY20

Cold-start emission Sampling Approach

Most Cold-Start (bag 1, 505s) HCs generated in 1st 250s

- HC-traps will be located downstream of ccTWC in an underfloor location
- Cold-start HC emission at ccTWC out needed to study HC speciation impact on HC-trap effectiveness
- Greater than 85% of cold-start (bag 1, 505s of FTP-75) HCs in the first 250s
- Effectiveness of HC-traps is not a linear relationship with C1 HC emissions
 - Exhaust HCs more complex than C1 quantity

Distribution of cold-start HC species change across ccTWC

- Significant drop in HC emission across TWC even during Cold-Start
- Both trucks had similar compositional distribution of HC C1 mass emissions at each location
- Distribution of HC species changes across ccTWC out: not just passing through
- Feed composition for development of ccTWC and HC-trap low temperature activity need to be different
- Cold-start THC at TWC out greater than full FTP targeted Tier 3 Bin 30 target (NMOG + NOx)

Detailed HC speciation by GC-MS provides identification of HC ≥ C5

- FTIR is ideal for small chain HC up to ~C4 (Distinct stretching regions)
- Analytical separation and identification by GC-MS provides more detail on species in exhaust
 - Major NM Paraffins: ethane and unbranched pentane and octane only account for ~31% of total TWC out

Total regulator C1 Mass (FID) → Compositional Distribution (FTIR major + Analytical minor)

→ Full HC Speciation (combination of FTIR + Analytical speciation)

Cold-start aromatics predominately larger, semi-volatile species

- Aromatics measured by FTIR method are "as C7" or toluene, measure stretch of the aromatic ring
- FTIR aromatic mass accounts for ~80% of total aromatics by analytical speciation (GC-MS)
 - GC-MS only identifies 9% of speciated aromatics as toluene
- TWC out aromatics are mix of fuel species other partial combustion products
- Only one species seen in Engine out speciation not seen at TWC out: tetramethyl benzene

PM mass drop over ccTWC indicated by PN reduction

Collaboration

Technical

- Elemental carbon accounts for ~90% of total PM mass over first 250s
- Equates to nearly half of Tier 3 Bin 30 limit of 3mg total PM over entire FTP drive cycle
- Particle Number correlates to acceleration events in FTP
 - 76- 95% of PN in 1st 250s
- TWC reduces particle PN by 40-44%

Future Work

Response to 2019 Reviewers' Comments

- New Task in FY19;
- No previous reviewer response because 2020 AMR is first review

Collaborations and Coordination

Relevance Approach Technical Collaboration Future Work

Collaborations

Umicore supplying HC-traps and GPFs for FY20 study

- Umicore and Ford technical staff acting as informal advisors on technical set-up of HC-trap vehicle testing
 - Umicore: John Nunan and David Moser
 - Ford Motor Co.: Jason Lupescu and Christine Lambert

Coordination:

- Share results CLEERS community
- HC-traps aged by SGS
 - according US Drive storage protocol

Remaining Challenges and Future Research Plans

Relevance Approach Technical Collaboration Future Work

Remaining Challenges	Future Work* (subject to change with funding levels)			
 Cold-start HC emission need to be reduced to meet future emission standards HC-traps efficiency can vary by HC species 	 Measure detailed HC speciation after under floor HC-trap (FY20) Study impact HC-trap + GPF on HC speciation during cold-start (FY20) 			
 Hybridization may reduce catalyst activity beyond vehicle cold-start due to drop in exhaust temperatures when engine is off 	 Evaluate the impact of hybridized vehicle on HC emissions (FY21) Measure the HC-trap trapping efficiency and speciation effectiveness from hybridized vehicle (FY21) 			

Summary

Relevance

 Hydrocarbon reduction during cold-starts when oxidation catalysts are not active will be needed to meet the more stringent HC emission standards for Tier 3 Bin 30 and beyond. HC-traps offer a potential solution but do not work uniformly for all hydrocarbon species.

Approach

- Use a chassis dynamometer to collect cold-start exhaust samples over the first 250s of FTP-75 drive cycle from consumer light-duty GDI pick-ups and collect analytical samples for detailed HC speciation by GC-MS
- Evaluate which specific HC species are effectively trapped on a supplier developed HC-trap during cold-start

Technical Accomplishments

 Detailed speciation of HCs during first 250s of FTP cold-start at engine out and close-coupled TWC out. TWC out will be used as HC-trap In during FY20 study of HC-traps.

Collaborations

- Umicore and Ford technical experts are providing guidance on proper HC-trap testing on vehicles
- Umicore supplying HC-traps and catalyzed GPFs

Future Work

- Vehicle evaluation of HC-trap and a HC-trap + GPF impact on the detail HC speciation of the cold-start emissions
- Investigate the use of HC-traps for control of hydrocarbon emissions from hybridized vehicles.

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

How to study the chemistry of cold-start emissions

Approach Technical Collaboration Relevance **Future Work**

Vehicle Platforms on Chassis Dynamometer

Truck A and Truck B: MY18, GDI pick-up trucks (25-30k on-road miles)

	Engine	Exhaust Modifications
Truck A	2.7L Turbo (V6)	Removed: muffler, resonator
Truck B	5.3L NA (V8)	Removed: UB catalyst, muffler, resonator

Cold-Start:

- 1 cold-start/truck per day (cold-start = 12hr soak)
- 1st, 250s of FTP-751

Sampling:

P	Time	Engine Out	TWC Out	HC-trap Out	HC-trap +GPF Out	Speciation/Analyzed	Method
Bag	250s/505s	✓	✓	FY20	FY20	Total HC, NOx, CO, CO2 (ppm)	FID, (CAI emissions analyzers)
Canister	250s	✓	\checkmark	FY20	FY20	C_5 - C_8 Hydrocarbons (ng/L)	GC-MS
Empore	250s	✓	\checkmark	FY20	FY20	C ₉ -C ₁₈ Hydrocarbons (ng/L)	Extraction + GC-MS
DNPH	250s	✓	\checkmark	FY20	FY20	Aldehydes (ng/L)	Extraction + HPLC-MS or HPLC-UV-Vis
PM mass	250s		\checkmark	FY20	FY20	Particulate Matter (mg/L)	Gravimetric
PM EC/OC	250s		\checkmark	FY20	FY20	Elemental & Organic Carbon (mg/L)	Thermal-Optical
EEPS	250s/505s	✓	✓	FY20	FY20	PN (#/s) and Size Distribution (nm) time resolved (10Hz)	Array of Electrometers (electrical mobility)
FTIR	250s/505s	✓	✓	FY20	FY20	Gaseous Concentrations (ppm) time resolved (5Hz)	IR (stretching frequency)

ABBREVIATIONS for Slide 6

CUC Clean-up catalyst

DOC Diesel oxidation catalyst

DPF Diesel particulate filter

GOC Gasoline oxidation catalyst

GPF Gasoline particulate filter

HCT Hydrocarbon trap

LNT Lean NOx trap

PNA Passive NOx adsorber

SCR Selective catalytic reduction

TWC Three-way catalyst

Stoich Stoichiometric

SI Spark ignited

CDC Conventional diesel combustion

LTC Low temperature combustion

ACI Advanced compression ignition

PNA Passive NOx adsorber

rpm Revolutions per minute

BMEP Brake mean effective pressure

